skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shawon, Abu_Sayeed_Md"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Activation is the first step in aerosol‐cloud interactions, which have been identified as one of the principal uncertainties in Earth's climate system. Aerosol particles become cloud droplets, or activate, when the ambient saturation ratio exceeds a threshold, which depends on the particle's size and hygroscopicity. In the traditional formulation of the process, only average, uniform saturation ratios are considered. However, turbulent environments like clouds intrinsically have fluctuations around mean values in the scalar fields of temperature and water vapor concentration, which determine the saturation ratio. Through laboratory measurements, we show that these fluctuations are an important parameter that needs to be addressed to fully describe activation. Our results show, even for single‐sized, chemically homogeneous aerosols, that fluctuations blur the correspondence between activation and a particle's size and chemical composition, that turbulence can increase the fraction of aerosol particles which activate, and that the activated fraction decreases monotonically as the concentration of aerosol increases. Taken together, our data demonstrate that fluctuations can have effects equivalent to the aerosol limited and updraft limited regimes, known from adiabatic parcel theory. 
    more » « less